Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Lancet Respir Med ; 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2299676

RESUMEN

BACKGROUND: In patients receiving venovenous (VV) extracorporeal membrane oxygenation (ECMO) packed red blood cell (PRBC) transfusion thresholds are usually higher than in other patients who are critically ill. Available guidelines suggest a restrictive approach, but do not provide specific recommendations on the topic. The main aim of this study was, in a short timeframe, to describe the actual values of haemoglobin and the rate and the thresholds for transfusion of PRBC during VV ECMO. METHODS: PROTECMO was a multicentre, prospective, cohort study done in 41 ECMO centres in Europe, North America, Asia, and Australia. Consecutive adult patients with acute respiratory distress syndrome (ARDS) who were receiving VV ECMO were eligible for inclusion. Patients younger than 18 years, those who were not able to provide informed consent when required, and patients with an ECMO stay of less than 24 h were excluded. Our main aim was to monitor the daily haemoglobin concentration and the value at the point of PRBC transfusion, as well as the rate of transfusions. The practice in different centres was stratified by continent location and case volume per year. Adjusted estimates were calculated using marginal structural models with inverse probability weighting, accounting for baseline and time varying confounding. FINDINGS: Between Dec 1, 2018, and Feb 22, 2021, 604 patients were enrolled (431 [71%] men, 173 [29%] women; mean age 50 years [SD 13·6]; and mean haemoglobin concentration at cannulation 10·9 g/dL [2·4]). Over 7944 ECMO days, mean haemoglobin concentration was 9·1 g/dL (1·2), with lower concentrations in North America and high-volume centres. PRBC were transfused on 2432 (31%) of days on ECMO, and 504 (83%) patients received at least one PRBC unit. Overall, mean pretransfusion haemoglobin concentration was 8·1 g/dL (1·1), but varied according to the clinical rationale for transfusion. In a time-dependent Cox model, haemoglobin concentration of less than 7 g/dL was consistently associated with higher risk of death in the intensive care unit compared with other higher haemoglobin concentrations (hazard ratio [HR] 2·99 [95% CI 1·95-4·60]); PRBC transfusion was associated with lower risk of death only when transfused when haemoglobin concentration was less than 7 g/dL (HR 0·15 [0·03-0·74]), although no significant effect in reducing mortality was reported for transfusions for other haemoglobin classes (7·0-7·9 g/dL, 8·0-9·9 g/dL, or higher than 10 g/dL). INTERPRETATION: During VV ECMO, there was no universally accepted threshold for transfusion, but PRBC transfusion was invariably associated with lower mortality only when done with haemoglobin concentration of less than 7 g/dL. FUNDING: Extracorporeal Life Support Organization.

2.
Front Cardiovasc Med ; 9: 987008, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2154703

RESUMEN

In atrial and ventricular tachyarrhythmias, reduced time for ventricular filling and loss of atrial contribution lead to a significant reduction in cardiac output, resulting in cardiogenic shock. This may also occur during catheter ablation in 11% of overall procedures and is associated with increased mortality. Managing cardiogenic shock and (supra) ventricular arrhythmias is particularly challenging. Inotropic support may exacerbate tachyarrhythmias or accelerate heart rate; antiarrhythmic drugs often come with negative inotropic effects, and electrical reconversions may risk worsening circulatory failure or even cardiac arrest. The drop in native cardiac output during an arrhythmic storm can be partly covered by the insertion of percutaneous mechanical circulatory support (MCS) devices guaranteeing end-organ perfusion. This provides physicians a time window of stability to investigate the underlying cause of arrhythmia and allow proper therapeutic interventions (e.g., percutaneous coronary intervention and catheter ablation). Temporary MCS can be used in the case of overt hemodynamic decompensation or as a "preemptive strategy" to avoid circulatory instability during interventional cardiology procedures in high-risk patients. Despite the increasing use of MCS in cardiogenic shock and during catheter ablation procedures, the recommendation level is still low, considering the lack of large observational studies and randomized clinical trials. Therefore, the evidence on the timing and the kinds of MCS devices has also scarcely been investigated. In the current review, we discuss the available evidence in the literature and gaps in knowledge on the use of MCS devices in the setting of ventricular arrhythmias and arrhythmic storms, including a specific focus on pathophysiology and related therapies.

3.
Intensive Care Med ; 48(6): 667-678, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1899121

RESUMEN

PURPOSE: Severely ill patients affected by coronavirus disease 2019 (COVID-19) develop circulatory failure. We aimed to report patterns of left and right ventricular dysfunction in the first echocardiography following admission to intensive care unit (ICU). METHODS: Retrospective, descriptive study that collected echocardiographic and clinical information from severely ill COVID-19 patients admitted to 14 ICUs in 8 countries. Patients admitted to ICU who received at least one echocardiography between 1st February 2020 and 30th June 2021 were included. Clinical and echocardiographic data were uploaded using a secured web-based electronic database (REDCap). RESULTS: Six hundred and seventy-seven patients were included and the first echo was performed 2 [1, 4] days after ICU admission. The median age was 65 [56, 73] years, and 71% were male. Left ventricle (LV) and/or right ventricle (RV) systolic dysfunction were found in 234 (34.5%) patients. 149 (22%) patients had LV systolic dysfunction (with or without RV dysfunction) without LV dilatation and no elevation in filling pressure. 152 (22.5%) had RV systolic dysfunction. In 517 patients with information on both paradoxical septal motion and quantitative RV size, 90 (17.4%) had acute cor pulmonale (ACP). ACP was associated with mechanical ventilation (OR > 4), pulmonary embolism (OR > 5) and increased PaCO2. Exploratory analyses showed that patients with ACP and older age were more likely to die in hospital (including ICU). CONCLUSION: Almost one-third of this cohort of critically ill COVID-19 patients exhibited abnormal LV and/or RV systolic function in their first echocardiography assessment. While LV systolic dysfunction appears similar to septic cardiomyopathy, RV systolic dysfunction was related to pressure overload due to positive pressure ventilation, hypercapnia and pulmonary embolism. ACP and age seemed to be associated with mortality in this cohort.


Asunto(s)
COVID-19 , Insuficiencia Cardíaca , Hipertensión Pulmonar , Embolia Pulmonar , Disfunción Ventricular Izquierda , Disfunción Ventricular Derecha , Anciano , Ecocardiografía , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Estudios Retrospectivos , Disfunción Ventricular Derecha/diagnóstico por imagen
4.
Trials ; 22(1): 172, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1622253

RESUMEN

OBJECTIVES: The primary objective of this study is to test the hypothesis that administration of dexamethasone 20 mg is superior to a 6 mg dose in adult patients with moderate or severe ARDS due to confirmed COVID-19. The secondary objective is to investigate the efficacy and safety of dexamethasone 20 mg versus dexamethasone 6 mg. The exploratory objective of this study is to assess long-term consequences on mortality and quality of life at 180 and 360 days. TRIAL DESIGN: REMED is a prospective, phase II, open-label, randomised controlled trial testing superiority of dexamethasone 20 mg vs 6 mg. The trial aims to be pragmatic, i.e. designed to evaluate the effectiveness of the intervention in conditions that are close to real-life routine clinical practice. PARTICIPANTS: The study is multi-centre and will be conducted in the intensive care units (ICUs) of ten university hospitals in the Czech Republic. INCLUSION CRITERIA: Subjects will be eligible for the trial if they meet all of the following criteria: 1. Adult (≥18 years of age) at time of enrolment; 2. Present COVID-19 (infection confirmed by RT-PCR or antigen testing); 3. Intubation/mechanical ventilation or ongoing high-flow nasal cannula (HFNC) oxygen therapy; 4. Moderate or severe ARDS according to Berlin criteria: • Moderate - PaO2/FiO2 100-200 mmHg; • Severe - PaO2/FiO2 < 100 mmHg; 5. Admission to ICU in the last 24 hours. EXCLUSION CRITERIA: Subjects will not be eligible for the trial if they meet any of the following criteria: 1. Known allergy/hypersensitivity to dexamethasone or excipients of the investigational medicinal product (e.g. parabens, benzyl alcohol); 2. Fulfilled criteria for ARDS for ≥14 days at enrolment; 3. Pregnancy or breastfeeding; 4. Unwillingness to comply with contraception measurements from enrolment until at least 1 week after the last dose of dexamethasone (sexual abstinence is considered an adequate contraception method); 5. End-of-life decision or patient is expected to die within next 24 hours; 6. Decision not to intubate or ceilings of care in place; 7. Immunosuppression and/or immunosuppressive drugs in medical history: a) Systemic immunosuppressive drugs or chemotherapy in the past 30 days; b) Systemic corticosteroid use before hospitalization; c) Any dose of dexamethasone during the present hospital stay for COVID-19 for ≥5 days before enrolment; d) Systemic corticosteroids during present hospital stay for conditions other than COVID-19 (e.g. septic shock); 8. Current haematological or generalized solid malignancy; 9. Any contraindication for corticosteroid administration, e.g. • intractable hyperglycaemia; • active gastrointestinal bleeding; • adrenal gland disorders; • presence of superinfection diagnosed with locally established clinical and laboratory criteria without adequate antimicrobial treatment; 10. Cardiac arrest before ICU admission; 11. Participation in another interventional trial in the last 30 days. INTERVENTION AND COMPARATOR: Dexamethasone solution for injection/infusion is the investigational medicinal product as well as the comparator. The trial will assess two doses, 20 mg (investigational) vs 6 mg (comparator). Patients in the intervention group will receive dexamethasone 20 mg intravenously once daily on day 1-5, followed by dexamethasone 10 mg intravenously once daily on day 6-10. Patients in the control group will receive dexamethasone 6 mg day 1-10. All authorized medicinal products containing dexamethasone in the form of solution for i.v. injection/infusion can be used. MAIN OUTCOMES: Primary endpoint: Number of ventilator-free days (VFDs) at 28 days after randomisation, defined as being alive and free from mechanical ventilation. SECONDARY ENDPOINTS: a) Mortality from any cause at 60 days after randomisation; b) Dynamics of inflammatory marker (C-Reactive Protein, CRP) change from Day 1 to Day 14; c) WHO Clinical Progression Scale at Day 14; d) Adverse events related to corticosteroids (new infections, new thrombotic complications) until Day 28 or hospital discharge; e) Independence at 90 days after randomisation assessed by Barthel Index. The long-term outcomes of this study are to assess long-term consequences on mortality and quality of life at 180 and 360 days through telephone structured interviews using the Barthel Index. RANDOMISATION: Randomisation will be carried out within the electronic case report form (eCRF) by the stratified permuted block randomisation method. Allocation sequences will be prepared by a statistician independent of the study team. Allocation to the treatment arm of an individual patient will not be available to the investigators before completion of the whole randomisation process. The following stratification factors will be applied: • Age <65 and ≥ 65; • Charlson Comorbidity index (CCI) <3 and ≥3; • CRP <150 mg/L and ≥150 mg/L • Trial centre. Patients will be randomised in a 1 : 1 ratio into one of the two treatment arms. Randomisation through the eCRF will be available 24 hours every day. BLINDING (MASKING): This is an open-label trial in which the participants and the study staff will be aware of the allocated intervention. Blinded pre-planned statistical analysis will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size is calculated to detect the difference of 3 VFDs at 28 days (primary efficacy endpoint) between the two treatment arms with a two-sided type I error of 0.05 and power of 80%. Based on data from a multi-centre randomised controlled trial in COVID-19 ARDS patients in Brazil and a multi-centre observational study from French and Belgian ICUs regarding moderate to severe ARDS related to COVID-19, investigators assumed a standard deviation of VFD at 28 days as 9. Using these assumptions, a total of 142 patients per treatment arm would be needed. After adjustment for a drop-out rate, 150 per treatment arm (300 patients per study) will be enrolled. TRIAL STATUS: This is protocol version 1.1, 15.01.2021. The trial is due to start on 2 February 2021 and recruitment is expected to be completed by December 2021. TRIAL REGISTRATION: The study protocol was registered on EudraCT No.:2020-005887-70, and on December 11, 2020 on ClinicalTrials.gov (Title: Effect of Two Different Doses of Dexamethasone in Patients With ARDS and COVID-19 (REMED)) Identifier: NCT04663555 with a last update posted on February 1, 2021. FULL PROTOCOL: The full protocol (version 1.1) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the standard formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Asunto(s)
COVID-19/terapia , Dexametasona/administración & dosificación , Glucocorticoides/administración & dosificación , Respiración Artificial , Síndrome de Dificultad Respiratoria/terapia , COVID-19/complicaciones , Ensayos Clínicos Fase II como Asunto , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Estudios de Equivalencia como Asunto , Humanos , Tiempo de Internación , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Síndrome de Dificultad Respiratoria/etiología , SARS-CoV-2
5.
Crit Care ; 24(1): 702, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: covidwho-992527

RESUMEN

COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.


Asunto(s)
COVID-19/diagnóstico por imagen , Consenso , Ecocardiografía/normas , Testimonio de Experto/normas , Internacionalidad , Sistemas de Atención de Punto/normas , COVID-19/terapia , Ecocardiografía/métodos , Testimonio de Experto/métodos , Humanos , Pulmón/diagnóstico por imagen , Tromboembolia/diagnóstico por imagen , Tromboembolia/terapia , Triaje/métodos , Triaje/normas , Ultrasonografía/normas
6.
Trials ; 21(1): 631, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: covidwho-635068

RESUMEN

BACKGROUND: Novel coronavirus SARS-CoV-2 is known to be susceptible in vitro to exposure to hydroxychloroquine and its effect has been found to be potentiated by azithromycin. We hypothesise that early administration of hydroxychloroquine alone or in combination with azithromycin can prevent respiratory deterioration in patients admitted to intensive care due to rapidly progressive COVID-19 infection. METHODS: Design: Prospective, multi-centre, double-blind, randomised, controlled trial (RCT). PARTICIPANTS: Adult (> 18 years) within 24 h of admission to the intensive care unit with proven or suspected COVID-19 infection, whether or not mechanically ventilated. Exclusion criteria include duration symptoms of febrile disease for ≥ 1 week, treatment limitations in place or moribund patients, allergy or intolerance of any study treatment, and pregnancy. INTERVENTIONS: Patients will be randomised in 1:1:1 ratio to receive Hydroxychloroquine 800 mg orally in two doses followed by 400 mg daily in two doses and azithromycin 500 mg orally in one dose followed by 250 mg in one dose for a total of 5 days (HC-A group) or hydroxychloroquine + placebo (HC group) or placebo + placebo (C-group) in addition to the best standard of care, which may evolve during the trial period but will not differ between groups. Primary outcome is the composite percentage of patients alive and not on end-of-life pathway who are free of mechanical ventilation at day 14. SECONDARY OUTCOMES: The percentage of patients who were prevented from needing intubation until day 14, ICU length of stay, and mortality (in hospital) at day 28 and 90. DISCUSSION: Although both investigational drugs are often administered off label to patients with severe COVID-19, at present, there is no data from RCTs on their safety and efficacy. In vitro and observational trial suggests their potential to limit viral replication and the damage to lungs as the most common reason for ICU admission. Therefore, patients most likely to benefit from the treatment are those with severe but early disease. This trial is designed and powered to investigate whether the treatment in this cohort of patients leads to improved clinical patient-centred outcomes, such as mechanical ventilation-free survival. TRIAL REGISTRATION: Clinical trials.gov: NCT04339816 (Registered on 9 April 2020, amended on 22 June 2020); Eudra CT number: 2020-001456-18 (Registered on 29 March 2020).


Asunto(s)
Azitromicina/administración & dosificación , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Hidroxicloroquina/administración & dosificación , Neumonía Viral/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , COVID-19 , Infecciones por Coronavirus/mortalidad , Método Doble Ciego , Quimioterapia Combinada , Humanos , Unidades de Cuidados Intensivos , Pandemias , Neumonía Viral/mortalidad , Estudios Prospectivos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA